Semi-infinite programming, duality, discretization and optimality conditions

نویسنده

  • Alexander Shapiro
چکیده

The aim of this paper is to give a survey of some basic theory of semi-infinite programming. In particular, we discuss various approaches to derivations of duality, discretization, and first and second order optimality conditions. Some of the surveyed results are well known while others seem to be less noticed in that area of research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality conditions and duality for multiobjective semi-infinite programming problems with generalized (C, α, ρ, d)-convexity

This paper deals with a nonlinear multiobjective semi-infinite programming problem involving generalized (C,α, ρ, d)-convex functions. We obtain sufficient optimality conditions and formulate the Mond-Weirtype dual model for the nonlinear multiobjective semi-infinite programming problem. We also establish weak, strong and strict converse duality theorems relating the problem and the dual problem.

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

Necessary Optimality and Duality for Multiobjective Semi-infinite Programming

The aim of this paper is to deal with a class of multiobjective semi-infinite programming problem. For such problem, several necessary optimality conditions are established and proved using the powerful tool of K − subdifferential and the generalized convexity namely generalized uniform ( , , , ) K F d α ρ − − convexity. We also formulate the Wolf type dual models for the semi-infinite programm...

متن کامل

Optimality and Duality for Minimax Fractional Semi-Infinite Programming

The purpose of this paper is to consider a class of nonsmooth minimax fractional semi-infinite programming problem. Based on the concept of H − tangent derivative, a new generalization of convexity, namely generalized uniform ( , ) H B ρ − invexity, is defined for this problem. For such semi-infinite programming problem, several sufficient optimality conditions are established and proved by uti...

متن کامل

Optimality and Duality for Non-smooth Multiple Objective Semi-infinite Programming

The purpose of this paper is to consider a class of non-smooth multiobjective semi-infinite programming problem. Based on the concepts of local cone approximation, K − directional derivative and K − subdifferential, a new generalization of convexity, namely generalized uniform ( , , , ) K F d α ρ − − convexity, is defined for this problem. For such semi-infinite programming problem, several suf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008